
Satellites in Our Pockets:
An Object Positioning System using Smartphones

Justin Manweiler
IBM T. J. Watson Research∗

Hawthorne, NY, USA
jmanweiler@us.ibm.com

Puneet Jain
Duke University

Durham, NC, USA
puneet.jain@duke.edu

Romit Roy Choudhury
Duke University

Durham, NC, USA
romit.rc@duke.edu

ABSTRACT
This paper attempts to solve the following problem: can
a distant object be localized by looking at it through a
smartphone. As an example use-case, while driving on
a highway entering New York, we want to look at one
of the skyscrapers through the smartphone camera, and
compute its GPS location. While the problem would have
been far more difficult five years back, the growing number
of sensors on smartphones, combined with advances in
computer vision, have opened up important opportunities.
We harness these opportunities through a system called
Object Positioning System (OPS) that achieves reasonable
localization accuracy. Our core technique uses computer
vision to create an approximate 3D structure of the object and
camera, and applies mobile phone sensors to scale and rotate
the structure to its absolute configuration. Then, by solving
(nonlinear) optimizations on the residual (scaling and ro-
tation) error, we ultimately estimate the object’s GPS position.

We have developed OPS on Android NexusS phones and ex-
perimented with localizing 50 objects in the Duke University
campus. We believe that OPS shows promising results, en-
abling a variety of applications. Our ongoing work is focused
on coping with large GPS errors, which proves to be the prime
limitation of the current prototype.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and
Software

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Augmented Reality, Localization, Structure from Motion
∗This work was conducted at Duke University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’12, June 25–29, 2012, Low Wood Bay, Lake District, UK.
Copyright 2012 ACM 978-1-4503-1301-8/12/06 ...$10.00.

1. INTRODUCTION
Imagine the following scenario in the future. While leaving
for office, Alice needs to ensure that the repairman comes
to her home later in the day and fixes the leakage on the
roof. Of course, the leak is small and Alice must point out
the location of the leak. To this end, she walks across the
road in front of her house, points her camera towards the
leak, takes a few photos, and types in “leaking from here”.
Later, when the repairman comes to Alice’s house, he points
his camera towards the roof and scans – when the leak is
inside the camera’s view-finder, Alice’s message pops-up.
The repairman repairs the leak and leaves. Alice comes
back home in the evening, points her camera towards the
leak, and sees the repairman’s tag: “repaired, received

payment, thanks!”. Before returning into her house, she
cursorily scans the neighborhood with her phone to see if
there was anything new. She finds a “pool party Saturday

evening” tag at the community swimming pool, and another
on a tall crane at a nearby construction site, that read “too
noisy: 13 votes”. Alice remembers how she has been
frustrated as well, so points her camera at the crane and
votes. She looks at the tag again to confirm, which now reads
“too noisy: 14 votes”.

While this may be an intriguing vision of the future, the
core idea of tagging objects in the environment, and
viewing them through a smartphone’s viewfinder, is old.
A variety of augmented reality applications have already
built such frameworks – Wikitude and Enkin even offer
them on the app store [16]. However, these applications
implicitly assume that objects in the environment have been
annotated out-of-band – that someone visited Google Earth,
and entered a tag for the swimming pool. Later, when
an Enkin user looks at the same pool through her camera
viewfinder, tags of all the objects in her viewfinder pops up.
We believe that out-of-band tagging is one of the imped-
iments to augmented reality (AR) becoming mainstream.
The ability to tag the environment spontaneously will be
vital if users must embrace AR applications in their daily lives.

This project – Object Positioning Systems (OPS) – is tasked
to address this “missing piece” in today’s AR applications.
Our ultimate goal is to offer a service that allows a lay user
to point her smartphone to any object in the environment
and annotate it with comments. While this is the front-end
functionality of our system, the key challenge in the back-end
pertains to object localization. Our system essentially needs
to compute the GPS location of the desired object, and then

211

trivially associate the user-generated tag to that location.
Another user standing at a different location should be
able to look at the same object, run our system to compute
its location, and retrieve all tags associated to it. Ideally,
the system should operate in real time, so the user can
immediately view the tag she has created.

While translating this vision to reality warrants a long-term
research effort, as a first step, we narrow down its scope
as follows. We sidestep indoor environments due to their
stringent requirements on object positioning accuracy – a
tag for a chair cannot get attached to the table. Therefore,
we focus on outdoor objects and assume desktop-type CPU
capability (which if unavailable on today’s phone, may be
available through the cloud). Even under this narrowed
scope, the challenges are multiple: (1) State-of-the-art
in computer vision is capable of localizing objects from
hundreds of pictures of the same object [19, 21]. In the case
where a few pictures are available – such as those taken by
Alice of her rooftop – computer vision becomes inapplicable.
Our intuition suggests that sensor information from mobile
devices should offer opportunities to compensate for the
deficiencies in vision, but the techniques for such information
fusion are non-trivial. (2) The smartphone sensors, such as
GPS, accelerometer, compass, and gyroscope, are themselves
noisy, precluding the ability to pivot the system on some
ground truth. Hence, aligning sensor information with vision
will become even more difficult, requiring us to formulate
and solve a “mismatch minimization” problem. (3) OPS
needs to identify the user’s intention – different objects
within the viewfinder may be at different depths/locations,
and only the intended object’s location is of interest. (4)
Finally, the system needs to be reasonably lightweight in
view of the eventual goal of on-phone, real-time operation.

The design of OPS has converged after many rounds of
testing and modification. Our current prototype on Android
NexusS phones has been used to localize 50 objects within
the Duke University campus (e.g., buildings, towers, parking
lot, cranes, trees). Performance evaluation shows that
the system exhibits promising behavior. In some cases,
however, our errors can be large, mainly stemming from
excessively-high GPS errors. Nonetheless, OPS is able to
identify and communicate such cases to the user – like
a confidence metric – allowing them to re-attempt the
operation. While not ready for real-world deployment, we
believe OPS demonstrates an important first step towards a
difficult problem with wide-ranging applications.

The key contributions in OPS are summarized as follows.

1. Localization for distant objects within view: We show
opportunities in multimodal sensing to localize visible
objects in outdoor environments, with core techniques
rooted in mismatch optimization.

2. System design and implementation on the Android
NexusS platform: Reasonably lightweight algorithms
achieve promising location accuracy, with marked
improvements over an optimized triangulation-based
approach using GPS and compass.

The rest of the paper expands on these contributions, begin-
ning with motivation and overview in Section 2 and primi-

tives of OPS localization in Section 3. Next, in Section 4,
we present the design of OPS. In Section 5, we address addi-
tional practical challenges for translating the core design into
a complete system. We provide results from our testing ex-
periences in Section 6 and our ongoing work to improve OPS
in Section 7. We compare OPS with the state of the art in
Section 8. Section 9 concludes with a brief summary.

2. MOTIVATION AND OVERVIEW
This section visits the motivation of the paper, with a gener-
alization of OPS to other applications, and then presenting
a functional overview of the system. The subsequent sec-
tions elaborate on the core technical challenges and solutions.

2.1 Applications beyond Tagging
An Object Positioning System (OPS) has natural applications
in tagging the environment. While this was our initial
motivation, we observed that the core capability to localize
a distant object is probably a more general primitive. In
contemplating on the possibilities, we envisioned a number
of other applications that can overlay on OPS:

(1) Location-based queries have been generally interpreted
as queries on the user’s current location (e.g., “restaurants
around me,” “driving directions from here to the airport”).
However, queries based on a distant object can be entirely
natural, such as “how expensive are rooms in that nice hotel
far away,” or “is that cell tower I can see from my house too
close for radiation effects?” While walking or driving up
to the object location is one way to resolve the query, the
ability to immediately look up the hotel price based on the
hotel’s location, is naturally easier. OPS could enable such
“object-oriented queries.”

(2) OPS could potentially be used to improve GPS, par-
ticularly where the GPS errors are large or erratic. This
is true even though OPS actually depends on GPS. The
intuition is that combination of multi-modal information
– vision and GPS in this case – can together improve
each of the individual dimensions. Thus, knowing the loca-
tion of the object can help improve the location of the camera.

(3) High-end cars entering the market are embedded with
a variety of safety features [13], such as adaptive cruise
control, lane change detection, blind spot alerts, etc. Existing
cars remain deprived of the capabilities since upgrades
may be expensive, even if feasible. High accuracy OPS
technologies on mobile smartphones may enable services
that approximate these capabilities. Smartphones mounted
near the car’s windshield could estimate location of other
objects in the surroundings, and trigger appropriate reactions.

To summarize, one may view OPS as somewhat analogous
to GPS – GPS satellites help receivers estimate self-location,
while OPS phones estimate other’s-locations. It is this analog
that motivates our metaphor – satellites in our pockets.

2.2 System Overview
We present an overview of OPS with the goal of introducing
the functional components in the system, and their interac-
tions. We expect it to help the transition to technical details.

212

3D Geometry
Photographs

of Object

 Accelerometer,
Compass, GPS

Optimization
Techniques

North

East

User

Object
Coordinate

Figure 1: An architectural overview of the OPS system – inputs from computer vision combined with multi-modal sensor
readings from the smartphone yield the object location.

When a user activates OPS on her smartphone, the camera is
automatically turned on, along with the GPS, accelerometer,
compass, and gyroscope. The user is expected to bring the
object of interest near the center of her viewfinder, and take
a few pictures from different positions. These positions can
be separated by a few steps from each other in any direction
– the goal is to get multiple views/angles of the same object.
As few as 4 photos are adequate, however, more the better.
Once completed, OPS displays the object’s GPS coordinate.

While this is a simple front-end, Figure 1 shows the flow
of operations at the back-end. The pictures taken by the
user are accepted as inputs to the computer vision module,
which implements a technique called structure from motion
(SfM) [9]. Briefly, SfM is the process of extracting a 3D
structure of an object from diverse views of a moving camera.
As a part of this process, SfM first identifies keypoints in
each picture – keypoints may be viewed as a set of points
that together capture the defining aspects of the picture.
The keypoints are matched across all the other pictures, and
those that match offer insights into how the camera moved
(or its angle changed) while the user clicked the different
pictures. The final output of this process is a 3D structure,
composed of the object and the camera locations.

Importantly, the 3D structure – also called the point cloud
– is not in absolute scale. Rather, the point cloud offers
information about the relative camera positions, as well as
the relative distances between the cameras and the object. To
be able to obtain the GPS location of the object, the point
cloud needs to be “grounded” on the physical coordinate
system. In an ideal scenario, where the point cloud and the
GPS locations are both precise, it would be easy to scale
the relative camera locations to match the GPS points. This
will scale the object-distance as well, eventually yielding
the absolute object location. Unfortunately, errors in the
point cloud, and particularly in GPS readings, introduce
a mismatch. Therefore, OPS uses the configuration of
the camera-locations in the point cloud to first adjust the
GPS positions. To this end, OPS formulates and solves an
optimization problem to minimize the total adjustments.

The next goal is to use the compass readings from these
(corrected) locations to triangulate the object of interest.
Again, if all compass readings were accurate, any pairwise
triangulation from the GPS points should yield the same

object location. Unsurprisingly, compasses are noisy as well –
therefore OPS executes another optimization that minimizes
the total adjustments on all compasses, under the constraint
that all triangulations result in the same object location.
This corrects the compass readings, and also offers a rough
estimate of the object’s distance from the GPS locations. By
applying the compass readings back on the 3D point cloud,
and again solving an optimization problem (detailed later),
OPS finally converges on the object location.

OPS also extracts the height of the object, by incorporating
the angular pitch of the phone while taking the picture. Thus,
the final output is a location in 3D space, represented as a
GPS coordinate and a height above the ground. The following
sections zoom into the details of each of these components,
beginning with the primitives of object localization.

3. PRIMITIVES FOR
OBJECT LOCALIZATION

Inferences of a distant location from a known point-of-origin
is an old problem. Historically, the principles of triangulation
date to Greek philosophers of the 6th Century BC. Land
surveying applies the same basic techniques today at great
precision. The related technique of trilateration (location
determination through known distances, rather than angles)
is the technical basis of GPS. As a starting point, we
investigate the applicability of these techniques to object
localization.

Why not use GPS/compass to triangulate?
Smartphones have embedded GPS and compass (magne-
tometer) sensors. The precise location and compass bearings
from any two points determines a pair of lines1. The
object-of-interest should fall at their unique intersection. We
illustrate compass-based triangulation in Figure 2.

In principle, if a user points her phone at an object-of-interest
from two distinct locations, we should be able to easily infer
the object’s location. Of course, to obtain these distinct
locations, we cannot ask the user to walk too far, or using
the system would be impractical. Instead, we can imagine
the user walking just a few steps to infer the location
of the object, say 40 meters away. When the scenario is

1The two points must not be collinear to the remote location.

213

Compass
Bearing

Object Position

(x1,y1)

(a,b)

(x2,y2)

Figure 2: Compass-based triangulation from GPS loca-
tions (x1, y1), (x2, y2) to object position (a, b).

such (i.e., distance between camera views is much smaller
than the distance from the camera to the object), compass
precision becomes crucial. A few degrees of compass error
can dramatically reduce the accuracy of triangulation.
Similarly, if the distance between the camera views are
slightly erroneous, the result can also be error-prone.
Smartphone sensors are not nearly designed to support
such a level of precision. GPS can be impacted by weather
(due to atmospheric delay), clock errors, errors in estimated
satellite ephemeris, multipath, and internal noise sources
from receiver hardware. Compass magnetometer readings
are imprecise and subject to bias, due to variation in the
Earth’s magnetic field and nearby ferromagnetic material.
Triangulation, at least under these extreme conditions, does
not apply immediately.

Can smartphones apply trilateration?
Trilateration requires estimating the distance to the object-of-
interest (range), from two vantage points. GPS is a popular
implementation of trilateration – the distances from multiple
satellites are computed from the propagation delay of the
corresponding signals. Unfortunately, a GPS-like scheme
is inapplicable for object positioning, since the objects are
not collocated with a wireless radio. The phone camera,
however, may partially emulate this functionality without
any requirement of infrastructure at the object. This can
naturally be an appealing alternative.

So long as the object-of-interest remains clearly in the camera
view, the size of an object in the picture is a function of the
camera’s distance to that picture. The size can be estimated
by the visual angle needed for that object (Figure 3), which
can be computed as v = 2arctan(s/d), where v is the visual
angle, s is the size (or height) of the object, and d is the dis-
tance to the object. Since we do not know object size s, we
cannot compute d. However, knowing two different visual
angles from two distinct locations, it is possible to eliminate
s and obtain a ratio of the distances to the object from these
locations. Let σ denote this ratio; then σ can be computed as

σ :=
d′

d
=

tan(v/2)

tan(v′/2)

Thus, although visual trilateration cannot precisely localize
the object, the value of σ can certainly offer hints about the

d

s2arctan()s
2d

v
Object Size

Distance

Observer

Figure 3: The visual angle v relates the apparent size s of
an object to distance d from the observer.

object’s position. If one plots all points in space that are away
from two camera locations in the ratio of σ, one gets a curve
as shown in Figure 4. The object will naturally lie at some
location on this curve.

d1 d2

(a,b)

(x1,y1)

(x2,y2)

Figure 4: Visual Trilateration: unknown distances from
GPS locations (x1, y1) and (x2, y2) to object position (a, b)
are in a fixed ratio d2/d1.

Can phone cameras also triangulate?
Land surveying systems typically use optical sensing for
precise triangulation. Possibly, the camera could be exploited
to improve the accuracy of compass-based triangulation as
well. Multiple views of an object from different angles, even
if only slightly different, produce visual distortions, due to
the phenomenon of parallax. Points in the foreground appear
to change in relative position to points in the background.
The properties of parallax, and visual perception in general,
are well-understood. For example, stereo vision leverages
parallax effects to invoke a three-dimensional perception
from two-dimensional images. Thus, with a careful analysis
of images taken from multiple nearby locations, it should
be possible to invert these effects. In particular, it would be
possible to infer the interior angle between a pair of GPS
locations and the object position. However, knowing the
interior angle is again not adequate to pinpoint the object
location – instead it offers a curve and the object can be at
any location on this cure. Figure 5 captures this efficacy of
visual triangulation.

Combining Triangulation and Trilateration
While neither triangulation nor trilateration can pinpoint
object location, observe that computing the intersection of
the two curves (in Figure 4 and Figure 5) yields a small
number of intersection points. Moreover, if compass triangu-
lation is added, there is more than adequate information to

214

(a,b)
Fixed

Interior
Angle

(x1,y1)

(x2,y2)

Figure 5: Visual Triangulation: fixed interior angle from
known GPS location (x1, y1) to unknown object position
(a, b) to known GPS position (x2, y2) .

uniquely identify the object position (a, b). Figure 6 shows
the superimposition of all four curves – observe that this is
an over-constrained system, meaning that there is more than
sufficient information to compute an unique solution.

This excess of information will later form the basis for noise
correction on imperfect sensors. This is necessary because,
with errors from GPS, compass, and inaccurate parameter es-
timation from the visual dimensions, we do not obtain a sin-
gle point of intersection across all curves. While increasing
the number of camera views will help, it will also increase
the number of curves (each with some error). Thus, ulti-
mately, we are left with many points of intersection, many
of which can be far away from the true object position. To
find a single point of convergence, we will rely on optimiza-
tion techniques, finding the most-likely true object point by
minimizing estimates of sensor error.

Object Position

(x1,y1)

(a,b)

(x2,y2)

d1
d2 Fixed

Interior
Angle

Compass
Bearing

Figure 6: Intersection of the four triangulation curves for
known points (0, 0) and (10,−4), localized point (4, 8), dis-
tance ratio σ = 6

√
(5)/4

√
(5) = 1.5, and internal angle

γ = 2 · arctan(1/2) ≈ 53◦.

Next, we describe the OPS system design, focusing mainly
on how advanced computer vision techniques can be applied
to implement visual trilateration and triangulation. In par-
ticular, vision will quantify relative distance and invert the

effects of parallax to find the interior angle between a pair of
photographs, which will guide the other sensors to ultimately
yield object location.

4. OPS: SYSTEM DESIGN
In an ideal world, visual information should not be necessary
– noise-free sensors should be able to triangulate the
object position. Since real-world sensors are noisy, OPS
uses visual information to combat the impact. However,
visual information relies partly on sensors, and thus, the
overall system needs to be optimized jointly, to marginalize
the noise. For ease of explanation, we first describe the
individual techniques in isolation (i.e., without considering
the effect of noise). Then, we explain how noise forced
many of our designs to fail, motivating our ultimate methods
of “mismatch optimization.” Figure 7 captures this flow of
operations.

OPS

Compass
Triangulation

Structure-from-Motion

Optimization
Techniques

Visual
Trilateration

Visual
Triangulation

GPS Noise

Magnetometer
Noise

Noise Correction

Figure 7: OPS builds on triangulation and trilateration,
each underpinned by computer vision techniques, and
multi-modal sensor information. Sensor noise affects the
different techniques, and makes merging difficult.

4.1 Extracting a Visual Model
We begin with a discussion of the kind of information de-
ducible from multiple photographs of the same object. Fig-
ure 8 shows how two observers each experience a different
perspective transformation of the same object – a building.
Note that the apparent size of the same building is different in
each, as is the shape. The differences in scale2 can be used to
determine relative distances to the building. The shape of the
transformation can reveal something about the difference in
angle from each view to the building. As evident from our
discussion of visual trilateration and triangulation, relative
distances and angles from the cameras to the object can be
valuable for estimating its location. OPS relies on a state-of-
the-art computer vision technique, called Structure from Mo-
tion (SfM), to extract these distances and angles [9, 17]. As
we will see next, SfM derives a 3D model of objects in the
visible environment, including the object-of-interest and the
camera, and computes these relations from them.

Structure from Motion
The SfM module functions as a multi-step process as follows.
First, SfM accepts multiple photos from the user, and on
each photo, runs an algorithm known as a feature detec-
tor [1, 11, 15]. The algorithm identifies various “interesting”
points of the photo, called keypoints. Ideally, the keypoints

2After accounting for differences in camera focal length and
lens distortions.

215

Figure 8: Two vantage points of the same object of inter-
est. The “thought-bubbles” show the two different per-
spective transformations, each observing the same four
feature corner points.

should be those that are likely to be robust (stable) across
different perspectives of the same object. Put differently, a
robust keypoint is one that consistently reflects the same
physical point on the object. For example, the peak of a
pitched roof may be taken as a keypoint in each image of the
same house. Of course, the keypoint detection algorithm is
a heuristic, and is prone to inconsistencies across multiple
photos. However, with a large number of keypoints per
image, there is likely to be a substantial number of keypoints
that derive from the same physical point in all photos.

The keypoints from each photo are updated to a server, which
then executes a keypoint matching algorithm. The matching
process entails comparison of feature descriptors associated
with each keypoint. A feature descriptor can be thought of
as a unique “fingerprint” of a photograph, taken from the
pixels around the keypoint. If a pair of feature descriptors
are a strong match (numerically), the corresponding pair of
keypoints can be assumed to likely capture the same physical
point in the real world. Once keypoints are linked across
multiple photos, SfM now prepares to analyze the spatial
relationship between the locations at which the photographs
were taken.

For spatial reasoning, SfM applies algorithms that bear
similarity to stereo vision. Perspective differences from
multiple views of the same object (arising from parallax) can
be used to reconstruct depth information. However, unlike
stereo vision, SfM does not require a (known) fixed distance
and relative orientation between a pair of views. Instead,
SfM takes multiple sets of matched keypoints and attempts
to reconstruct (1) a sparse 3D point cloud of the geometry
captured by those keypoints, and (2) the relative positions
and orientation of the camera when the original photographs
were taken, known as pose. Figure 9 shows an example
point-cloud for a building – observe that the points in the
cloud are located on the surface of the building and other
visible objects in the environment, as well as at the location
of the camera.

SfM relies on Bundle Adjustment to perform a simultaneous
refinement on the estimated 3D point cloud and parameters
for each camera view (including, camera pose and lens distor-
tions). Popular implementations of Bundle Adjustment use
the Levenberg-Marquardt algorithm to perform a numerical
nonlinear optimization on reprojection error between what is
seen in each image (as described by the keypoints) and what
is predicted by different parameterizations of camera pose

Figure 9: Example of a 3D point cloud overlaid on one of
the images from which it was created.

and 3D geometry. Thus, in summary, the final output from
SfM is a considerably-accurate 3D point cloud.

From 3D Point-Cloud to Physical Location
For OPS, we utilize SfM as a “black box” utility. As input,
SfM takes the matched keypoints of the user’s images. As
output OPS receives a 3D point cloud of estimated <X, Y, Z>
coordinates for each keypoint that was successfully matched
across a sufficient number of images. We also have estimated
<X, Y, Z> camera pose coordinates from where each photo
was originally taken. This coordinate system, however, even
if completely precise, exists at an unknown relative scaling,
translation, roll, pitch, and tilt from the corresponding loca-
tions in the real-world. To compute the physical location of
the object, the camera locations and orientations in the 3D
model needs to be “aligned” with the GPS and compass read-
ings from the smartphone. However, since the GPS/compass
readings themselves will be noisy, this alignment will be non-
trivial – the GPS/compass values will need to be adjusted to
minimize the mismatch. Moving forward, OPS will focus on
addressing these challenges.

4.2 Questions
Before we continue further into the challenges of mismatch
minimization, we briefly discuss a few natural issues related
to the system build-up.

(1) Capturing User Intent
The use of computer vision entails a second practical chal-
lenge – many objects may appear in the camera view. OPS
must be able to infer, automatically, which object in view the
user is most-likely interested in localizing. For example, a
building may be partially occluded by trees. Thus, the point
cloud may contain many keypoints that are not reflective of
the specific object-of-interest. In general, we assume that the
user positions the object-of-interest roughly at the center of
the camera’s viewfinder. Across multiple photographs, the in-
tended object will become a “visual pivot.” Near-foreground
and distant-background points appear to shift away from this
central point, due to parallax. More sophisticated techniques
based on the computer vision techniques of segmentation are
also relevant here. For example, in Section 5, we will con-
sider an alternative approach for cases where we can assume
the user is focused on a building. In our evaluation, however,
we will avoid such assumptions.

216

(2) Privacy
We note that while OPS may offload computational tasks to a
central server/cloud, users need not ever upload actual pho-
tographs of objects-of-interest (in fact, they can be discarded
from the smartphone as well). Instead, they can only upload
the keypoints and feature descriptors, that contain all the in-
formation needed by SfM. This serves to address any privacy
concerns that a user may have with OPS.

4.3 Point Cloud to Location:
Failed Attempts

In our original design, we expected that once a Structure-
from-Motion point cloud is extracted, estimation of the real-
world coordinate of the object would be reasonably straight-
forward. This would only require mapping vision <X, Y, Z>
coordinates to real-world <latitude, longitude, altitude>. In
practice, substantial sensor noise makes this mapping more
difficult and error-prone than we had anticipated.

The point cloud reflects the structure of the object location
relative to the user’s locations, when the original photographs
were taken, but at an unknown relative scaling, translation,
roll, pitch, and tilt from the real-world. Importantly, the
locations at which the photographs have been taken are
known in both real-world coordinates (through GPS) as
well as in the SfM-derived coordinate system. In principle,
some affine transformation should exist to convert from
one coordinate system to the other. We sought to apply
state-of-the-art computer vision optimization techniques to
estimate this affine transformation, and we describe three of
our failed attempts, followed by the actual proposal.

Attempts using Point Cloud Registration
We applied the computer vision technique of Iterative Closest
Point (ICP) to find the mapping. ICP is commonly used in the
registration of one point cloud to another. Before applying
ICP, we first eliminated what is typically a key challenge; we
pre-defined the association of points from one point cloud to
the other. We also eliminated as many degrees-of-freedom in
the transformation as possible: we normalized the <X, Y, Z>
coordinates to eliminate translation from the search space
and constrained scaling to be uniform in all dimensions. We
attempted three mechanisms for estimation of the affine
transformation: first, an approach based on the Singular
Value Decomposition (SVD); next, a nonlinear minimization
of transformation error based on the Levenberg-Marquardt
algorithm; third, we exploited knowledge of surface normals
of camera pose (the 3D direction at which the camera points)
in the SfM point cloud and attempted to match with a 3D
phone rotation matrix from compass and accelerometer (to
find orientation relative to the vector of gravity). In all cases,
sensor noise (in GPS, compass, and accelerometer) resulted
in a nonsensical transformation. With only a few camera
locations to connect one coordinate system to the other, and
a still-large number of remaining degrees-of-freedom in the
transformation, there is simply insufficient data to overcome
sensor noise.

Attempts Intersecting Triangulation/Trilateration
After many unsuccessful attempts at applying computer
vision techniques to estimate the affine transformation
between coordinate systems, we attempted to simplify the
localization problem. We tried to directly apply our intuitions

for (1) compass triangulation; (2) visual trilateration; and
(3) visual triangulation. The parameters of relative distance
and interior angles can be trivially estimated from a SfM
point cloud. If all sensors and vision techniques were
fully-precise, the true (a, b) object location should fall at the
intersection of those equations. In practice, after numerically
solving the roots of all equation pairs, sensor noise and bias
create many intersection points. We applied a 2D hierarchical
clustering on these intersection points, hoping that one of
the clusters would be distinctly dense, and the centroid of
that cluster would be the estimated object location. In many
cases, this proved correct. However, in more cases, sensor
error (especially GPS) was large. Intersection points became
diffused, and no longer indicative of the true location. To be
practical, OPS would need to apply a more robust approach.

Attempts Optimizing Across Error Sources
We were encouraged by the partial-success of our second ap-
proach, directly applying our equations of triangulation and
trilateration. Next, we attempted to push this technique fur-
ther, this time integrating an optimization approach. We for-
mulated a minimization problem on the error terms for each
sensor value and vision-derived parameter, and with the op-
timization constrained to find a single object location (a, b).
This led to a complex nonlinear optimization with many er-
ror terms and constraints. While this would occasionally con-
verge to the correct object location, more often it found a triv-
ial and nonsensical solution. For example, GPS error terms
would “correct” all GPS locations to the same point. Further,
the complexity of the optimization led to an impractically-
long running time.

4.4 The Converged Design of OPS
From our early attempts to build a real-world object location
model, we learned two important lessons that influenced
the final design of OPS. First, any optimization would
need to be constrained to be limited in the number of
degrees-of-freedom and avoid degenerate cases. Second, we
would need a mechanism to reduce the impact of GPS error.
The final design of OPS consists of two optimization steps,
each designed to limit the potential for degenerate solutions.

Before continuing, it is helpful the simplify our notion of
location. We do not consider latitude and longitude directly,
as angular values are inconvenient for measuring distances.
Instead, we apply a precise Mercator projection to the square
UTM coordinate system. Therefore, we can now refer to a
latitude/longitude position as a simple 2D (x, y) coordinate.
Recovery of the final <latitude, longitude> coordinate of the
object is a straightforward inversion of this projection.

“Triangulation” via Minimization on Compass Error
Before explaining the optimizations underlying OPS, it is
instructive to consider a reasonable baseline comparison.
Since we assume that the user will take more than two
photographs when using OPS, it would be unfair to com-
pare OPS to a triangulation with only two GPS readings
(Gx1 , G

y
1), (G

x
2 , G

y
2) and two compass bearings θ1, θ2. Instead,

we must generalize the notion of triangulation to support as
many measurements as will be available for OPS.

In Table 1, we present a nonlinear optimization that rep-
resents a triangulation-like approach to object localization.

217

Unlike standard triangulation, this scales to support an
arbitrary number of GPS (Gxi , G

y
i) and compass heading θi

pairs. In noise-free conditions, all lines of compass bearing
originating at the corresponding GPS point would converge
to a single point (a, b). Of course, due to sensor error, we can
expect that all pairs

(
n
2

)
of compass lines will result in

(
n
2

)
different intersection points. The optimization that follows
seeks to find the most-likely single point of intersection by
rotating each compass bearing as little as possible until all
converge at the same fixed point (a, b). We experimented
with a number of other approaches for “generalized triangu-
lation.” For one, we considered joint optimizations on GPS
and compass. For another, we considered the 2D median
of all

(
n
2

)
intersections points. After experimentation, we

believe this is the most-effective technique, and thus the
fairest baseline comparison method to OPS.

Minimize
∑
∀i

|Eθi |

Subject to

∀i : b−Gyi = (a−Gxi) · cot(θi + Eθi)

Solving for a, b

∀i : Eθi

With parameters

∀i : Gxi , G
y
i , θi

Name Parameter Sources
Gxi , G

y
i GPS position (of user at each photograph)

θi Compass bearing (at each photograph)
Name Solved Variable Interpretation
a, b Estimated object location at (a, b)
Eθi Estimated error for compass bearing θi

Table 1: Optimization for Triangulation

Now, we turn our attention to the two-step process employed
in OPS. First, we apply the output of computer vision to
correct for noise in GPS measurements. Second, we extend
this baseline sensor-only optimization for triangulation to (1)
use our corrected GPS points; and (2) exploit our intuitions
for visual trilateration and triangulation.

Minimization of GPS Noise, Relative to Vision
From our earlier attempts, we realized that a direct applica-
tion of our intuitions for visual trilateration and triangulation
would be insufficient. Instead, we need a mechanism to re-
duce sensor noise before a object-positioning step can be ef-
fectively applied. Here, we rely on the output of structure
from motion to correct for random GPS noise. Bias across all
GPS measurements will remain. However, a consistent bias
will be less damaging to the final localization result than im-
precision in the relative GPS positions across multiple pho-
tographs. Structure from motion can help eliminate this noise
between relative positions, as it tends to capture this rela-
tive structure with far greater precision than GPS. We design
a nonlinear programing optimization that seeks to move the
GPS points as little as possible, such that they match the cor-
responding relative structure known from vision.

We design an optimization that maps the original GPS points
where photographs were taken {∀i : (Gxi , G

y
i)} to a set of

fixed GPS points {∀i : (F xi , F
y
i) = (Gxi + Exi , G

y
i + Eyi)}.

The optimization will also solve a scaling factor λ that
proportionally shrinks or expands the point-to-point dis-
tances in the structure-from-motion point cloud to match
the equivalent real-world distances measured in meters.
The constraints simply enforce that the distance between
any pair of GPS points,

√
(Gxi −Gxj)2 + (Gyi −G

y
j)

2, is

equal to the distance between those same points in vision

coordinates,
√

(V hi − V hj)2 + (V di − V dj)2, after multiplying

the vision distance by a constant factor λ.3 Since we expect
the GPS points to have some noise relative to the same points
in vision, we introduce error terms for the GPS distance,√

(Exi − Exj)2 + (Eyi − E
y
j)

2. With these error terms, the

optimization is simply a minimization on the sum of squared
error. Table 2 presents the complete optimization.

Minimize
∑
∀i

(
Exi

2 + Eyi
2
)

Subject to

∀i, j :
[
(Gxi + Exi)− (Gxj + Exj)

]2
+[

(Gyi + Eyi)− (Gyj + Eyj)
]2

=

λ2 ·
[
(V hi − V hj)2 + (V di − V dj)2

]
Solving for σ

∀i : Exi , E
y
i

With parameters

∀i : Gxi , G
y
i , V

h
i , V

d
i

Name Parameter Sources
Gxi , G

y
i GPS position (of user at each photograph)

V hi , V
d
i Vision position (arbitrary units)

Name Solved Variable Interpretation
λ Scaling factor, vision coordinates to GPS

Exi , E
y
i Estimated camera GPS error

Table 2: OPS Optimization on GPS Error

OPS Optimization on Object Location
From the GPS-correction optimization (Table 2), we are left
with a set of fixed GPS points, {∀i : (F xi , F yi)}, and a scaling
factor λ from vision to GPS coordinates. Now, we take these
parameters to extend the baseline sensor-only optimization
for triangulation (Table 1), along with additional context
from visual trilateration and triangulation. We present this
final optimization as Table 3.

The additional context for visual trilateration and triangu-
lation is encoded as parameters {∀i, j : γij}, (Cx, Cy), and
D. Each value γij represents the angle from (F xi , F

y
i) to

3To avoid confusion with GPS x and y dimensions, we use
h and d to represent the relevant two dimensions of the vi-
sion coordinate system. The h, or horizontal, dimension runs
left/right of the object from the perspective of the user. The
d, or depth, dimension runs towards/away from the object.

218

(a, b) to (F xj , F
y
j), estimated from vision. As represented

in the notation, this is the positive acute angle between
vectors ~Vi and ~Vj . Thus, {∀i, j : γij} directly encodes our
original interpretation of visual triangulation. To avoid
redundancies in the constraints (since triangulation and
trilateration parameters are directly measured from the
same vision point cloud), we only need to partially encode
visual trilateration. Instead of encoding each of the relative
distance from each camera point, we can simply enforce
that the distance from the user’s position to the object
as a known, fixed value. We compute (Cx, Cy) as the
2D median across {∀i : (F xi , F

y
i)}, by applying convex

hull peeling. Next we enforce that the distance from
(Cx, Cy) to the object at (a, b),

√
(a− Cx)2 + (b− Cy)2, is

equal to the distance D. We can compute D from the vi-
sion point cloud along with the vision-to-GPS scaling factor λ.

The minimization function must change to accommodate
context from triangulation (visual trilateration is fully
incorporated as hard constraints). The addition of γij error
terms {∀i, j : Eγij} allow angular error to be traded between
magnetometer-derived compass headings and vision-derived
angles. The compass error scaling factor, (n− 1)/2, balances
for the lessor quantity of compass error terms relative to
pairwise vision angles.

Minimize
n− 1

2
·
∑
∀i

|Eθi |+
∑
∀i,j

|Eγij |

Subject to (a− Cx)2 + (b− Cy)2 = D2

∀i : b− F yi = (a− F xi) · cot(θi + Eθi)

∀i : ~Vi = (a− F xi)̂i+ (b− F yi)ĵ
∀i, j : γij + Eγij =

arccos
(
~Vi · ~Vj/|~Vi||~Vj |

)
Solving for a, b

∀i : Eθi

∀i, j : Eγij
With parameters Cx, Cy, D

∀i : F xi , F
y
i , θi

∀i, j : γij

Name Parameter Sources
F xi , F

y
i Fixed GPS position (at each photograph)

θi Compass bearing (at each photograph)
γij Vision estimate for vector angle ∠~Vi~Vj

Cx, Cy 2D Median of {∀i : (F xi , F yi)}
D Estimated distance from (Cx, Cy) to (a, b)

Name Intermediate Results
~Vi Vector from (F xi , F

y
i) to (a, b)

Name Solved Variable Interpretation
a, b Estimated object location at (a, b)
Eθi Estimated error for compass bearing θi
Eγij Estimated error in vector angle ∠~Vi~Vj

Table 3: OPS Final Object Localization

5. DISCUSSION
Extending the Location Model to 3D
In Section 4.4, we described how OPS estimates the object-
of-interest location in two dimensions, namely as the point
(a, b). In some contexts, the 3D location of the object can also
be useful. For example, we might want to localize a particular
window of a multistory building. Ultimately, OPS should
provide a < latitude, longitude, altitude > location tuple.
However, the height dimension adds additional challenges
not faced on the ground, following a plane tangential to
the Earth’s surface. First, GPS-estimated altitude is prone
to greater inaccuracy than latitude and longitude. Second,
while it is natural for a user to take multiple photos by
walking a few steps in-between, a requirement to take
photographs at multiple heights would become awkward.
Thus, while vision provides three-dimensional geometry, GPS
locations for photographs are roughly planar. Further, since
the object localization task is already challenging in two
dimensions, it is desirable to avoid integrating 3D into our
location optimizations.

Instead, OPS finds the two-dimensional object location first.
Next, it uses the now-known distance to the object, along
with accelerometer and vision inputs, to estimate height. For
each photograph, OPS records the raw three-axis accelerom-
eter output. Since we can expect the phone to be roughly
still while the photograph is taken, the accelerometer is antic-
ipated to measure only gravitational force. This gravitational
vector defines a unique orientation in terms of phone roll (ro-
tational movement on the plane of the phone screen, relative
to the ground) and pitch (rotational movement orthogonal to
the plane of the phone screen, relative to the horizon). Pitch
provides a rough estimate of how much higher (or lower) the
user is focusing, relative to a plane parallel to the ground and
intersecting the user at eye-level. To improve the accuracy
of this measurement, we can “average” pitch measurements
from every photograph. Importantly, the user might not align
the object in every photo at exactly the same pitch. For exam-
ple, the window might appear higher or lower on the screen.
We can correct for this by leveraging vision once again. From
our 3D point cloud, there is a unique mapping of every 3D
point back to each original 2D image. We can now compute
an adjustment value, measured in pixels, from the horizon-
tal center line of the screen. We can convert this pixel value
to an angle, given the known camera field-of-view. Next, the
angular sum of pitch and adjustment, averaged across all pho-
tographs, can be used to estimate height when combined with
the known two-dimensional distance.

hobject = hobserver +
2D distance

2 · tan
(

pitch+adjustment
2

)
Alternatives for Capturing User Intent
If we can make assumptions regarding the structure of the
object-of-interest, computer vision techniques of segmenta-
tion can assist in isolation of the object from the structure-
from-motion point cloud. For example, consider a typical
multistory building with large flat sides. Images of an exte-
rior wall will tend to yield many keypoints along a flat plane,
roughly perpendicular to the ground plane. These points on
the wall plane are often clearly distinct from points on the
ground, smaller clusters of points in the nearest-foreground
from occlusions, or sparse points in the distant background.

219

To determine where the object-of-interest lies within a point
cloud, we attempt to segment the point cloud and find such
a predominate plane. We apply Random Sample Consensus
(RANSAC) [5], an iterative method to estimate a model for
a plane, under an angular constraint that it must be roughly-
perpendicular to the ground and parallel to the field-of-view.
All points in the point cloud are then classified as either in-
liers or outliers to the plane. Next, we find the spatial cen-
troid among inliers to the plane. This point is considered to
be the object-of-interest.

6. EVALUATION
We take a systems-oriented approach in evaluating OPS,
so as to capture real-world performance. Phone sensors
are subject to noise and biases. GPS can be impacted by
weather (due to atmospheric delay), clock errors, errors in
estimated satellite ephemeris, multipath, and internal noise
sources from receiver hardware. Compass magnetometers
are affected by variations in the Earth’s magnetic field and
nearby ferromagnetic material. Computer vision techniques,
such as structure from motion, can break down in a variety
of scenarios. For example, keypoint extraction may fail
if photographs have insufficient overlap, are blurred, are
under or over-exposed, or are taken with too dark or bright
conditions (such as when the sun is in the user’s eyes). The
primary goal of our evaluation is to consider how well OPS
overcomes this naturally-challenging operational context.

6.1 Implementation
OPS is implemented in two parts, an OPS smartphone client
and a back-end server application. We built and tested the
OPS client on the Google NexusS phone, as a Java extension
to the standard Android 2.4 camera program. Photographs
may be pre-processed locally on the phone to extract
keypoints and feature descriptors (reducing the required data
transfer), or simply uploaded to our server for processing
(faster with a high-performance WiFi connection). Along
with photographs (or keypoints and descriptors), the phone
uploads all available sensor data from when each photograph
was taken, to include GPS, compass, and accelerometer. Our
server is a Lenovo desktop running Ubuntu Linux 11.04.

Computer Vision
Both the client and server applications support the basic
computer vision tasks of keypoint detection and extraction of
feature descriptors. We use the SURF (Speeded Up Robust
Feature) algorithm [1]. We choose SURF over the related
SIFT (Scale Invariant Feature Transform) [11] as it is known
to be considerably faster to compute and provide a greater
robustness against image transformations. SURF detection
and extraction are performed using OpenCV. For both the
client and server-side applications, JavaCV provides java
wrappers of native C++ calls into OpenCV.

For server-side structure from motion, we use Bundler, an
open-source project written by Noah Snavely and the basis
for the Microsoft Photosynth project [17]. Bundler operates
on an unordered set of images to incrementally-build a 3D
reconstruction of camera pose and scene geometry. As input,
Bundler expects keypoints matched across multiple photos
(on the bases of the corresponding feature descriptors).
Bundler can operate on any keypoint type, expecting SIFT

by default. We adapt the output of the OpenCV SURF
detector to match the SIFT-based input expected by Bundler,
substantially decreasing processing time per photo on the
phone. As output, Bundler provides a sparse point cloud
representation of the scene in view. OPS builds its real-world
localization model on top of this point cloud, which exists at
an unknown relative scaling, translation, roll, pitch, and tilt
from the corresponding locations in the real-world.

Server-side Nonlinear Optimization
The OPS server is implemented primarily in Java. Mathe-
matica is used through a Java API for solving nonlinear opti-
mizations. We use differential evolution as the optimization
metaheuristic for its strong robustness to local minima (sim-
ulated annealing proved to be similarly effective, with both
outperforming the default Nelder-Mead) [18].

6.2 Accuracy of Object Localization
We tested OPS at more than 50 locations on or near the
Duke University campus. We attempted to use OPS in the
most natural way possible, focusing on localization tests that
mirror how we would expect a real user would want to use
the system. Primarily, we considered objects at distances
between 30m and 150m away, for two reasons. First, the
object should be far enough away that it makes sense to
use the system, despite the hassle of taking photographs.
Though it only takes about a minute to take the required
photographs, a user should not be more willing to simply
walk over to the object to get a GPS lock. Second, distances
are limited by the user’s ability to clearly see the object and
focus a photograph. Building densities, building heights,
and presence of significant occlusions (such as trees), con-
strain the distances at which photographs can be easily taken.

We compare OPS accuracy to “Optimization (Opt.) Trian-
gulation.” To provide the fairest comparison, Triangulation
reflects the triangulation-like optimization described in
Section 4.4, designed to scale to an arbitrary number of GPS,
compass-heading pairs. For some graphs, we also show the
distance from the position at which photographs were taken
(centroid across all photographs) to the true object location.
This is an important consideration; as sensor values are
projected into the distance, noise and bias can be magnified.

Testing Parameters
OPS performance is dependent on the way OPS is used. For
our evaluation, we took four photographs for each local-
ization (the minimum required for structure from motion).
Each successful photograph was taken between 0.75m and
1.5m from the location of the preceding photograph, in
no specified direction. This flexibility is important, as it
allows the user the compose the shot as is natural, given
obstacles in the vicinity and visual occlusions. The distance
(about one or two paces) is sufficiently far that GPS is
able to estimate distance with sufficient (albeit still poor)
accuracy. The distance is sufficiently small as to ensure a
relatively small angular separation to the object of interest,
enabling structure from motion to work well. Further, the
distances are not too burdensome for the user; the required
photographs can be taken in less than one minute. Once the
user takes the required photos, processing requires approxi-
mately an additional 30-60 seconds, primarily attributable
to structure from motion computation and depending on the

220

Real Position

OPS

User

Triangulation

Real Position

OPS

User

Triangulation

Real Position

OPS

User

Triangulation

Figure 10: Sampled tests; circle denotes object-of-interest (top), Google Earth view (bottom): (a) smokestack of a coal
power plant; (b) distant building with vehicles in foreground; (c) stadium seats near goal post.

number of keypoints detected in each photo. With additional
photographs, both accuracy and processing time increase.

Structure from motion is sensitive to the quality of pho-
tographs. In poor lighting, keypoint detection becomes less
robust. Thus, OPS is sensitive to the quality of lighting
conditions. At night, there is unlikely to be sufficient light for
high-quality photographs. Further, a camera flash is useless
for the distances under consideration. At dawn and dusk,
direct sun into the camera lens can also ruin photographs.
We test OPS in daylight conditions, and avoid early morning
and late evening. We are considering extensions to OPS
to enhance performance in poor lighting, likely avoiding
structure from motion in these cases.

Example Usage Scenarios
In Figure 10, we show three example photos, taken while
using OPS. Below each photo, we show a screenshot taken
from Google Earth with four annotations, (1) the location at
which the user photographed the object-of-interest; (2) the
true location of the intended object (positioned at the center
of the screen in each photo; (3) the object position inferred
by Opt. Triangulation; and (4) the object position inferred
by OPS. We show these particular examples to highlight that
OPS is a general approach, and can therefore localize for
a wide variety of distant objects. Further, while the final
result may still be a substantial distance from the precise true
location, OPS is typically able to find a position that is far
more representative of the object-in-view than triangulation.

Overall Performance
Figures 11 and 12 present overall performance of OPS across
all locations. Figure 11 shows three CDF curves, (1) error
in meters from the OPS-localized position to the true object

position; (2) error in meters from the Opt. Triangulation po-
sition to the true object position; and (3) distance in meters
from the position at which photographs were taken (centroid
across all photographs) to the true object location. Figure 12
shows individual localization results, sorted by user-to-object
distance. Overall, OPS provides a substantial performance
improvement over triangulation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120

CD
F

Absolute Error in meters

OPS
Opt. Triangulation

Object Distance

Figure 11: CDF of error across all locations. Graph reflects
four photos taken per location. 50 locations.

Sensitivity to GPS and Compass Error
To better understand OPS’s robustness to sensor noise, we
wanted to carefully evaluate the impact of GPS and compass
noise, in isolation. We took a set of four photographs of
a Duke University Science Center building, from a mean
distance of 87m. We ensured that this particular set of
photographs provided a robust model from vision, through a
manual inspection of the point cloud. For each photograph,
we used Google Earth to mark the exact location at which

221

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35 40 45

Er
ro

r i
n

m
et

er
s

Buildings

OPS
Opt. Triangulation

Object Distance

Figure 12: OPS and triangulation error at 50 locations.
Graph reflects four photos taken per location.

 0

 10

 20

 30

 40

 50

 60

 70

 5 10 15 20 25 30

Po
si

tio
ni

ng
 E

rr
or

 in
 m

et
er

s

GPS Error, STD in meters

OPS
Opt. Triangulation

Figure 13: Error from ground-truth GPS camera locations.
X-axis shows the standard deviation of introduced Gaus-
sian GPS errors. Bars show median error; whiskers show
first and third quartiles.

it was taken, with less than one meter error. From these
carefully-marked points, we mathematically computed the
compass bearing to the object, assuring less than 5◦ error
(attributable to error in marking the points). Next, we ran-
domly perturbed each GPS point or compass angle according
to random deviates of a Gaussian (Normal) distribution
with mean 0 and a varied standard deviation. Figure 13
shows performance as a function of the standard deviation
of injected GPS error (in meters). OPS is able to leverage
vision to remove much of this GPS noise, providing strong
robustness. Figure 14 shows performance as a function of the
standard deviation of injected compass error (in degrees).
Superior performance of OPS is especially reflective of how
visual triangulation enforces the true relative angle between
a pair camera locations and the object position. Bars reflect
median of 50 trials with first and third quartiles on whiskers.

Sensitivity to Photograph Detail
Figure 15 shows OPS performance with varied levels of pho-
tographic detail. For this experiment, four photographs were
used, along with ground-truth GPS and compass data. Full-
resolution photos were downsampled, reducing the efficacy of
keypoint detectors. With fewer keypoints, especially at reso-
lutions below 1024x768 pixels, structure from motion suffers
and can impact the object position.

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60

Po
si

tio
ni

ng
 E

rr
or

 in
 m

et
er

s

Compass Error, STD in degrees

OPS
Opt. Triangulation

Figure 14: Error from ground-truth GPS camera locations.
X-axis shows the standard deviation of introduced Gaus-
sian compass errors. Bars show median error; whiskers
show first and third quartiles.

 0

 20

 40

 60

 80

 100

320x240 512x384 640x480 1024x768
1280x960

1600x1200
2560x1920

Er
ro

r i
n

m
et

er
s

Image resolution

Science Center
Public Policy Building

Figure 15: OPS error by photo resolution. Keypoint detec-
tion is less reliable below 1024x768 pixels.

7. ROOM FOR IMPROVEMENT
OPS remains an ongoing research project. We are exploring
a variety of mechanisms to improve accuracy.

Live Feedback to Improve Photograph Quality
OPS is impacted by the quality of user photographs. Poor
angular separation between two photographs (too small
or large) can reduce the efficacy of structure from motion.
We imagine a system of continuous feedback to the user,
aiding in shot selection and framing. By combining an
especially-lightweight keypoint detection heuristic, such
as FAST [15], on the camera video with information from
the phone gyroscope, it would be feasible to suggest when
a “good” photograph can be taken. Otherwise, we would
inform the user to take a corrective step (to the left or right).

Improving GPS Precision with Dead Reckoning
From Figure 13 and 14, it is clear that OPS is already
relatively insensitive to GPS and magnetometer noise.
Although OPS explicitly uses the output of structure from
motion to cancel GPS noise, large GPS errors can still become
disruptive – this is quite often the cause of poor performance.
One possibility is to apply additional sensors to improve GPS
precision. In particular, a constant bias is less damaging

222

than imprecise relative positions across camera locations.
We are considering mechanisms to leverage gyroscope and
accelerometer for dead reckoning between camera locations.

Continual Estimation of Relative Positions with Video
Continuous video could potentially be used to substantially
augment or even replace the structure-from-motion point
cloud. A frame-by-frame comparison of these keypoints,
in fine-grained comparison with accelerometer, gyroscope,
compass, and GPS, could provide a highly-detailed trace of
how the smartphone (1) moved in 3D space and (2) viewed
the object-of-interest in terms of relative angles/distances.

8. RELATED WORK
To the best of our knowledge, OPS is a first-of-kind system
to find the precise position for objects of significant distance
away, despite noisy sensors and without requiring a database
of pre-existing photographs or maps. Nonetheless, there
is a substantial body of related work, especially leverag-
ing computer vision for recognition of well-known landmarks.

Localization through Large-Scale Visual Clustering
OPS is related to the problem of worldwide localization on
the basis of visual classification [4,6,10,19,21]. Most closely
related to OPS, [21] is the back-end system underlying
Google Goggles: (1) online travel guides are mined for
possible tourist landmarks; (2) photo-sharing databases of
millions of GPS-tagged photos are searched using keywords
from these travel guides; (3) unsupervised visual clustering
on these search results provide a visual model of the
landmark. From 20 million GPS-tagged photos, 5312
landmarks can be recognized by visual comparison of a
photograph with these landmark models. OPS is designed
to be more generic, able to localize objects which cannot be
considered landmarks (without a pre-exiting photo library
of these objects). We believe that a hybrid approach can
be valuable, which leverages a photo database to enhance
accuracy (where useful photos are available), but can also
provide OPS functionality in the general case.

Aligning Structure from Motion to the Real World
Substantial computer vision literature has considered
improvements and applications of structure from motion
(SfM) [17]. However, our notion of “object positioning”
should not be confused with the computer vision concept
of object localization, which seeks to find the relative
location of objects within an image or point cloud. For
mobile systems, closely related to OPS, [7] uses SfM for a
“landmark-based” directional navigation system. SfM, along
with a preexisting database containing many photographs
of the area in view, enable a augmented reality view with
highlighted annotations for known landmarks. More-directly
related to the goals of OPS, [8] seeks to align the output
of structure from motion to real-world coordinates, using
GPS coordinates to improve the scalability of structure
from motion when using hundreds of photos. However, the
techniques require the availability of overhead maps and
are not suitable to the extremely small number of photos
(typically four) expected for OPS.

Building Object Inventories
Our use of multimodal sensing inputs for estimating object
position is related to the techniques in [3] for building

inventories of books in a library. The authors project a rough
indoor location for a book through WiFi and compass, then
apply vision techniques to visually detect book spines.

Applying Computer Vision to Infer Context
CrowdSearch [20] combines human validation with location-
specific image search (for objects such as buildings) through
computer vision. By leveraging Amazon Mechanical Turk for
human-in-the-loop operation, CrowdSearch enables precision
in cases of poor image quality. TagSense [14] infers “tags”
of human context for photographs, by combining computer
vision with multimodal sensing. OPS is complementary
to CrowdSearch and TagSense, by enabling awareness of
precise location for objects in photographs.

Object Recognition and Location Inference
In [12], the authors try to estimate the 3D-orientation and
location of an object in the real world scene using a polygonal
3D-model of a depicted object. The accuracy of OPS could
be enhanced opportunistically by utilizing the size of known,
recognizable objects when they happen to appear in the view.

Robotics Navigation and Obstacle Avoidance
Mobile robot navigation requires awareness of object posi-
tion (localization) for navigation and obstacle avoidance. [2]
surveys various techniques such as odometry, inertial navi-
gation, active beacons and model matching for relative and
absolute position measurement. These techniques typically
require specialized hardware, OPS attempts to solve object
localization using off-the-shelf smartphones.

9. CONCLUSION
Today’s augmented reality applications are less useful than
their potential. We believe this is due, at least in part, to an
unfortunate usage asymmetry. Users can retrieve available
localized content in a natural way, viewing pop-up annota-
tions for the world through their smartphone, but there is no
means to equivalently introduce new annotations of objects
in the vicinity. By providing localization for objects in a user’s
view, this paper seeks to enable convenient content creation
for augmented reality. Beyond augmented reality, we believe
that a precise Object Positioning System can be widely enabling
for a variety of applications, and is worthy of a significant re-
search endeavor. In this light, we believe that our approach,
OPS, takes a substantial first step.

10. REFERENCES
[1] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded

up robust features. In ECCV, 2006.
[2] J. Borenstein, H. Everett, L. Feng, and D. Wehe. Mobile

robot positioning-sensors and techniques. Technical
report, DTIC Document, 1997.

[3] D. M. Chen, S. S. Tsai, B. Girod, C.-H. Hsu, K.-H. Kim,
and J. P. Singh. Building book inventories using
smartphones. In Proceedings of the international
conference on Multimedia, MM ’10, pages 651–654,
New York, NY, USA, 2010. ACM.

[4] G. Cuellar, D. Eckles, and M. Spasojevic. Photos for
information: a field study of cameraphone computer
vision interactions in tourism. In CHI ’08 extended
abstracts on Human factors in computing systems, CHI

223

EA ’08, pages 3243–3248, New York, NY, USA, 2008.
ACM.

[5] M. Fischler and R. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image
analysis and automated cartography. Communications
of the ACM, 24(6):381–395, 1981.

[6] J. Hays and A. Efros. Im2gps: estimating geographic
information from a single image. In Computer Vision
and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, pages 1–8, June 2008.

[7] H. Hile, A. Liu, G. Borriello, R. Grzeszczuk,
R. Vedantham, and J. Kosecka. Visual navigation for
mobile devices. IEEE MultiMedia, 17:16–25, April 2010.

[8] R. Kaminsky, N. Snavely, S. Seitz, and R. Szeliski.
Alignment of 3d point clouds to overhead images. In
Computer Vision and Pattern Recognition Workshops,
2009. CVPR Workshops 2009. IEEE Computer Society
Conference on, pages 63–70, June 2009.

[9] J. Koenderink, A. Van Doorn, et al. Affine structure
from motion. JOSA A, 8(2):377–385, 1991.

[10] Y. Li, D. Crandall, and D. Huttenlocher. Landmark
classification in large-scale image collections. In
Computer Vision, 2009 IEEE 12th International
Conference on, pages 1957 –1964, 29 2009-oct. 2 2009.

[11] D. G. Lowe. Object recognition from local
scale-invariant features. In Proceedings of the
International Conference on Computer Vision-Volume 2 -
Volume 2, ICCV ’99, pages 1150–, Washington, DC,
USA, 1999. IEEE Computer Society.

[12] M. Magnor. Geometry-based automatic object
localization and 3-d pose detection. In Image Analysis
and Interpretation, 2002. Proceedings. Fifth IEEE
Southwest Symposium on, pages 144–147. IEEE, 2002.

[13] S. Moon, I. Moon, and K. Yi. Design, tuning, and
evaluation of a full-range adaptive cruise control
system with collision avoidance. Control Engineering
Practice, 17(4):442–455, 2009.

[14] C. Qin, X. Bao, R. Roy Choudhury, and S. Nelakuditi.
Tagsense: a smartphone-based approach to automatic
image tagging. In Proceedings of the 9th international
conference on Mobile systems, applications, and services,
MobiSys ’11, pages 1–14, New York, NY, USA, 2011.
ACM.

[15] E. Rosten and T. Drummond. Machine learning for
high-speed corner detection. In European Conference on
Computer Vision (ECCV), pages 430–443, 2006.

[16] G. Schall, J. Schöning, V. Paelke, and G. Gartner. A
survey on augmented maps and environments:
Approaches, interactions and applications. Taylor &
Francis Group, 2011.

[17] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism:
exploring photo collections in 3d. In ACM SIGGRAPH
2006 Papers, SIGGRAPH ’06, pages 835–846, New
York, NY, USA, 2006. ACM.

[18] R. Storn and K. Price. Differential evolution–a simple
and efficient heuristic for global optimization over
continuous spaces. Journal of global optimization,
11(4):341–359, 1997.

[19] G. Takacs, V. Chandrasekhar, N. Gelfand, Y. Xiong,
W. Chen, T. Bismpigiannis, R. Grzeszczuk, K. Pulli, and
B. Girod. Outdoors augmented reality on mobile phone
using loxel-based visual feature organization. In
Proceeding of the 1st ACM international conference on
Multimedia information retrieval, pages 427–434. ACM,
2008.

[20] T. Yan, V. Kumar, and D. Ganesan. Crowdsearch:
exploiting crowds for accurate real-time image search
on mobile phones. In Proceedings of the 8th
international conference on Mobile systems, applications,
and services, MobiSys ’10, pages 77–90, New York, NY,
USA, 2010. ACM.

[21] Y.-T. Zheng, M. Zhao, Y. Song, H. Adam,
U. Buddemeier, A. Bissacco, F. Brucher, T.-S. Chua, and
H. Neven. Tour the world: Building a web-scale
landmark recognition engine. In Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on, pages 1085–1092, June 2009.

Acknowledgments
We sincerely thank our shepherd, Gaetano Borriello, as well
as the anonymous reviewers, for their invaluable feedback.
We are grateful to NSF for partially funding this research
through the following grants: CNS-0916995 and IIS-910846.

APPENDIX
We provide equations for curves of visual trilateration and
triangulation. We assume at least two GPS points are known
(x1, y1), (x2, y2). The object position is inferred at (a, b).

(1) Equation of Visual Trilateration
Let σ = d2/d1 be the ratio of distance from (x2, y2) to (a, b)
divided by the distance (x1, y1) to (a, b).

(a− x2)2 + (b− y2)2 = σ2 [(a− x1)2 + (b− y1)2
]

To derive, construct two right triangles with hypotenuses
(x1, y1) to (a, b) and (x2, y2) to (a, b). Apply the Pythagorean
theorem on each, substituting the first into the second.

(2) Equation of Visual Triangulation
Let γ be the interior angle from (x1, y1) to (a, b) to (x2, y2).[

(x2 − x1)2 + (y2 − y1)2
]
=[

(a− x1)2 + (b− y1)2
]
+
[
(a− x2)2 + (b− y2)2

]
−

2
√

(a− x1)2 + (b− y1)2
√

(a− x2)2 + (b− y2)2 cos γ

To derive, apply the law of cosines (C2 = A2 + B2 −
2AB cos γ) withC taken as the side

√
(x2 − x1)2 + (y2 − y1)2.

224

